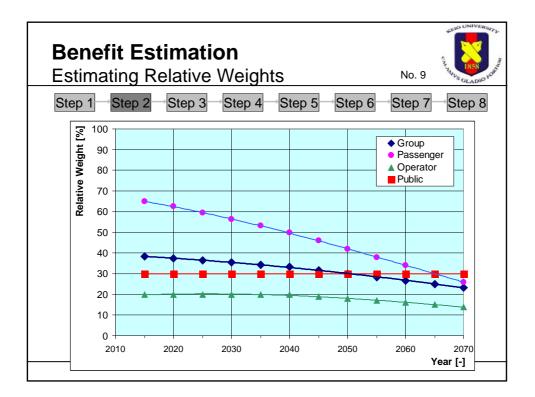
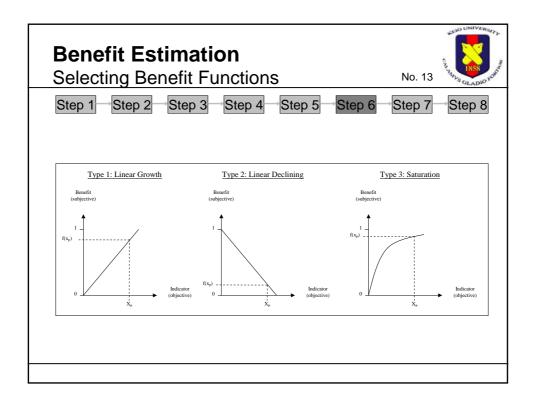
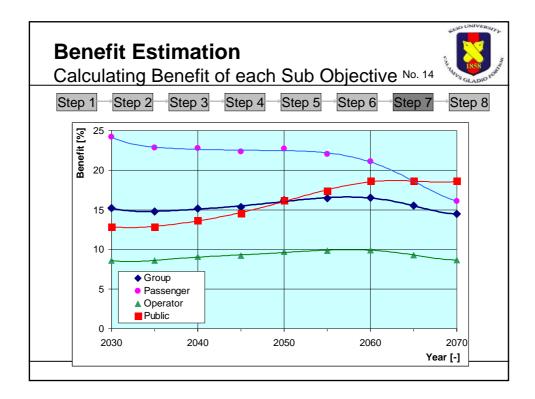
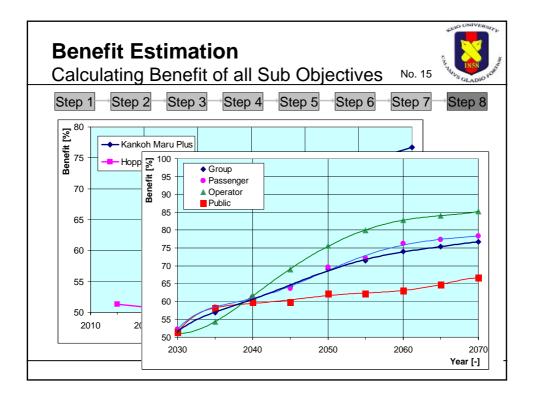
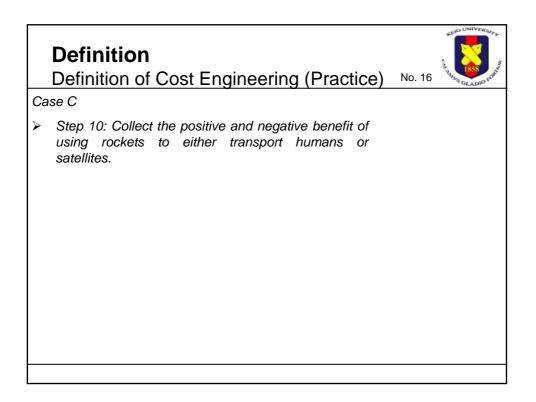

Content		
	No. 2	Natures GLADIO POLIC
≻ General		
Benefit Estimation		
- Reason		
- Step by Step Approach		
- Example		
Definition		
- Cost Engineering Practice		
Requests from Audience for Lectures		




 fit Estimation		Step 8
Sub Objectives	Goals for Year 2070	
11 Improve mission success rate	0,999 probability of mission success	
12 Reduce catastrophic failure rate	0,0001 probability of catastrophic failure	
13 Improve vehicle life-cycle	1000 reuses of vehicle	
14 Improve launch/landing method procedure	Comfortable and safe launch/landing	
15 Improve passenger enthusiasm	Flights satisfies passenger wishes	
16 Reduce number of stages	One-stage vehicle	
17 Improve configuration	Clean and simple functional configuration	
18 Improve propellant	Proven safe, green, and cheap propellants	
19 Improve passenger comfort	No necessity of special health requirements	
20 Reduce technical development risk	All subsystems are existing in-production hardware	
21 Improve mission flexibility	Vehicle serves tourism market and different satellite markets	
22 Improve seat capacity	100 passengers per vehicle	
23 Improve profitability	Business case is financial attractive to find enough investors	
24 Improve market share	Passenger ticket of a 1 day LEO trip costs \$50 000	
25 Improve mission duration	1 day mission with a high share of free-gravity flight	
26 Reduce turn-around time	1 day	
27 Simplify licensing process	Grant license after one test year	
28 Enhance social standard of society	Sensitiveness in having respect for mankind and Earth	
29 Reduce environmental pollution	Low emission engines	
30 Enhance national self-esteem and prestige	50 % of all UN members participate in space programs	
31 Provide realization of resettlement to other planets	Develop infrastructure for an extraterrestrial population of 100	
32 Provide a useful employment of military sector	1 million people employed in aerospace sector	
33 Provide more international cooperation	Space tourism market reaches 0,1 % of global GNP	




Step 1 → Step 2 → Step 3 → Step 4 → Ste	p 5 <mark>→</mark> Step 6	Step 7 Step
State Variable	Unit	Source of Procedure
102 Degree of system health monitoring	%	external estimates
103 Number of alternative landing sites	-	external estimates
104 Degree of soft abort capability	%	external estimates
106 Degree of redundancy	%	external estimates
109 Number of reuses of cold structure	-	TRASIM model
125 Cabin volume per passenger	m³/pax	external estimates
132 Return on Investment (ROI)	M\$	TRASIM model
134 Year of positive cash flow	-	TRASIM model
144 Specific propellant consumption	Mg/pax	external estimates


Selecting Benefit II Step 1 → Step 2 → Step 3		ep 4 Step 5 Step 6 Step 7 Step						
Benefit Indicators	Quality	Remark						
103 Number of alternative landing sites	0,3	For comparison, Space Shuttle can use in total 30 landing s for emergency landing (NASA, 2002) and is assumed in this s as the maximum necessary amount of alternatives.						
104 Degree of soft abort capability	0,4	Soft abort capability means that engine failure does not caus loss of control and vehicles are engines-out landing capable Space Shuttle's soft abort capability is set to 50 % for thi indicator to be comparable to other candidate vehicles. In genera winged vehicles are superior to ballistic vehicles due to the aerodynamic surfaces.						
106 Degree of redundancy	0,3	Redundancy means to finish the mission successfully even there is a malfunction of main engine, control engine, compute pilot, etc. Quality of Space Shuttle's redundancy is set to 50 % for this indicator to be comparable to other candidate vehicles.						

Step 1 → Step 2 → Step 3	⇒S	tep 4	⇒S	tep 5	S	tep 6	⇒S	tep 7	S	tep
	1	1	1	1	1		1	1	1	·
Benefit Indicators	Unit	2030	2035	2040	2045	2050	2055	2060	2065	207
103 Number of alternative landing sites	-	0	0	1	4	8	12	16	16	16
104 Degree of soft abort capability	%	40	40	40	40	40	40	40	40	40
106 Degree of redundancy	%	90	90	95	95	100	100	100	100	10

